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ABSTRACT

A simplified nonlinear numerical model for the development of incompressible magnetohydrodynamics in the
presence of a strong magnetic field Bk and stratification, nicknamed ‘‘Shell-Atm,’’ is presented. In planes orthogonal
to the mean field, the nonlinear incompressible dynamics is replaced by two-dimensional shell models for the com-
plex variables u and b, allowing one to reach large Reynolds numbers while at the same time carrying out sufficiently
long integrations to obtain good statistics at moderate computational cost. The shell models of different planes are
coupled by Alfvén waves propagating along Bk. The model may be applied to open or closed magnetic field config-
urations where the axial field dominates and the plasma pressure is low; here we apply it to the specific case of a mag-
netic loop of the solar corona heated bymeans of turbulence driven by photospheric motions, and we use statistics for
its analysis. The Alfvén waves interact nonlinearly and form turbulent spectra in the directions perpendicular and,
through propagation, also parallel to the mean field. A heating function is obtained and shown to be intermittent; the
average heating is consistent with values required for sustaining a hot corona and is proportional to the aspect ratio
of the loop to the �1.5 power, and characteristic properties of heating events are distributed as power laws. Cross-
correlations show a delay of dissipation compared with energy content.

Subject headinggs: MHD — Sun: corona — Sun: flares — turbulence
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1. INTRODUCTION

Magnetohydrodynamic (MHD) turbulence in the presence of
a mean magnetic field, with or without density and gravitational
gradients, plays a role in many environments, ranging from stel-
lar coronae and winds (Klein et al. 1991) to the interstellar me-
dium (Desai et al. 1994) and accretion disks. In such regions,
energy may be transferred, accumulated, and dissipated in a way
that is inherently anisotropic (Shebalin et al. 1983; Oughton et al.
1994; Kinney &McWilliams 1998; Müller et al. 2003; Oughton
et al. 2004).

In particular, in solar coronal physics, where one of the main
problems is to understand how the corona can be sustained at
more than a million kelvins, it is believed that the necessary heat-
ing could be produced at small scales generated by a nonlinear
cascade along a turbulent spectrum (Heyvaerts & Priest 1992;
Gómez & Ferro Fontán 1992). Furthermore, as flux tubes (e.g.,
in the form of coronal loops or coronal funnels) are omnipresent,
the anisotropy coming from the dominant magnetic field may be
a central feature of the processes governing energy dissipation,
such as the nonlinear collisions of counterpropagating Alfvén
wave packets. It can thus be expected that solving the coronal
heating problem, that is, understanding how the temperature of
the corona can be sustained, may require one to understand the
details of the turbulent dynamics of MHD in these environments.

One way to study and the dynamics of such systems is to per-
form direct numerical simulations (DNSs). In the case of aniso-
tropic MHD, DNSs have provided insight into subjects such as
the anisotropy of the spectra (e.g., Kinney & McWilliams 1998;
Oughton et al. 2004), the parametric decay of Alfvén waves

(e.g., Del Zanna et al. 2001), and Alfvén wave filamentation
(e.g., Passot & Sulem 2003). MHD simulations are also used to
study the topology of magnetic field lines andmagnetic reconnec-
tion in the corona (e.g., Aulanier et al. 2005). But the Reynolds
numbers attained in all the DNSs up to now are below 103, while
they are believed to be 1012Y1014 in the corona. DNSs are very
far from being able to represent all the scales of turbulence in the
corona; there is a huge gap to fill. Furthermore, as statistics are of
great help in the study of turbulence, attempts have beenmade to
statistically analyze energy dissipations produced by DNSs. Dis-
tributions of events have been, for instance, presented byDmitruk
et al. (1998) and Georgoulis et al. (1998) from two-dimensional
DNSs of reduced MHD. But it is still difficult to get significant
statistics from three-dimensional DNSs, and it is even more dif-
ficult when trying to go to higher Reynolds numbers, because then
the grid resolution must be higher and the computations of the
model are too slow. For all these reasons, there is a need for sim-
plified numerical models of MHD that can run sufficiently fast to
get statistics of turbulence at high Reynolds numbers while re-
taining the most relevant features of MHD turbulence.

Several approaches have been used to build such simplified
numerical models of MHD. For example, the self-organized crit-
icality (SOC) behavior of MHD systems can be modeled with
cellular automata, where the interactions of individual cells trans-
late into a global statistical behavior of the whole system, fol-
lowing the first models of Lu & Hamilton (1991) and Lu et al.
(1993). However, the need for physical realism is not entirely
addressed by the cellular automata, despite efforts to include
the constraints that issue from the MHD equations (Vlahos et al.
1995; Isliker et al. 2000, 2001; Buchlin et al. 2003).

Another approach is to simplify the nonlinear interactions by
reducing the number of modes that are allowed to interact non-
linearly. In the context of coronal loops, a shell-model approach
has been used by Nigro et al. (2004, 2005). We have developed a
similar numerical model independently, starting from the reduced
MHD equations but allowing for stratification of the plasma. This
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numerical code, nicknamed ‘‘Shell-Atm,’’ allows one to reach
(kinetic and magnetic) Reynolds numbers unachieved before. In
this paper, we focus on the problem of a coronal loop where en-
ergy is forced into the system by footpoint motions, describing in
detail the dynamics of the heating events, turbulence spectra,
statistics, and scaling laws.

2. DESCRIPTION OF THE SHELL-ATM MODEL

We start from an approximation to incompressibleMHDknown
as reduced MHD (RMHD; Kadomtsev & Pogutse 1974; Strauss
1976), which is valid when the plasma �-parameter (kinetic over
magnetic pressure) is low, the domain has a large aspect ratio
(a = l/LT1), and the poloidal field is small compared with a
strong axial external Bk magnetic field (B? /Bk P a). In this ap-
proximation, the largest extension L of the domain defines the
parallel direction, or z-axis, and the velocity field is only com-
posed of fluctuations u? orthogonal to the z-axis; the magnetic
field can be decomposed into Bk þ B?, where Bk = Bkêz is the
average magnetic field, parallel to the z-axis, and B? is a perpen-
dicular fluctuation. Throughout, we normalize the magnetic fields
by (�0�)

1/2, considering for the moment a medium with uniform
density �0 [bk = Bk/(�0�)

1/2 and b? = B?/(�0�)
1/2]. The equations

of RMHD become

@u?
@t

þ u? = :u? ¼ �:?

�
p

�0
þ 1

2
b2
?

�
þ b? = :b?

þ bk
@b?
@z

þ �:2
?u?; ð1Þ

@b?
@t

¼ b? = :u? � u? = :b? þ bk
@u?
@z

þ �:2
?b?; ð2Þ

: = u? ¼ 0; : = b? ¼ 0: ð3Þ

As one can see from these equations, the nonlinear dynamics
is confined to the planes perpendicular to the mean field Bk, while
Alfvén waves propagate along the mean field. Direct simulations
of these equations in one plane (Dmitruk et al. 1998; Georgoulis
et al. 1998) and in a three-dimensional (3D) box (Dmitruk et al.
2003) have been carried out, but the Reynolds numbers obtained
with such simulations are much too low to obtain a realistic iner-
tial range of turbulence and long-term statistics. It is therefore our
interest to simplify this model further by reducing the dynamics in
the planes. This can be done by using shell models, as described
below.

The plasma of the solar corona and solar wind is stratified, so
one must allow for gradients of the mass density � even while
considering incompressible couplings. Stratification couples in-
compressible Alfvén waves by introducing variations in Alfvén
speed and, therefore, reflection (as well as amplification or depres-
sion of amplitudes due to the conservation of energy flux). Such
terms may be written more clearly in terms of the Elsässer vari-
ables Z� = u? � b? [with b? = B?/(�0�)

1/2], in which case the
effect of stratification on the linear propagation of modes may be
written as

@Z�

@t
� bk = :Z� � Z� = :bk �

1

2
(Z� � Z�): = bk ¼ 0 ð4Þ

(Velli 1993).
The first two terms describe the wave propagation, the third

term describes the reflection of the waves by the perpendicular
gradient of the Alfvén speed (which vanishes for a nondiverging
flux tube), and the fourth term describes the growth or decrease

in the normalized wave amplitude due to variations in Alfvén
speed—ensuring conservation of wave energy flux—as well
as the isotropic part of the reflection. We will incorporate these
terms into the general framework of equations (1)Y(3), but first
we discuss how the nonlinear couplings are modeled in the shell
approximation.

2.1. Classical MHD Shell Models

In shell models of incompressible MHD turbulence (Gloaguen
et al. 1985; Biskamp 1994; Giuliani & Carbone 1998; Boffetta
et al. 1999; Giuliani et al. 2002), one starts by taking the Fourier
transform of the MHD equations and dividing wavevector space
into concentric shells Sn = {k | kkk 2 [kn, knþ1]} with kn = k0k

n,
n = 0, . . . , n? � 1, and usually k = 2. Also, a single complex
scalar value un is chosen to represent the original longitudi-
nal velocity increments [u(x þ ‘‘‘ ) � u(x)] = ‘‘‘/‘ on scales ‘ for
2�/‘ 2 Sn. The same approximation is made for the magnetic
field: a scalar value bn represents the magnetic field increments
on the same scales ‘. In this way the nonlinear interactions, orig-
inally a vector convolution in the 3D vector space, are reduced to
a one-dimensional (1D) summation in terms of the shell index n.
This one-dimensional model is the MHD analog of the Gledzer-
Ohkitani-Yamada (GOY; Yamada & Ohkitani 1988) shell model
of fluid turbulence.
One obtains the following equation, given byGiuliani&Carbone

(1998):

dZ�
n

dt
¼ �k 2

n (�
þZ�

n þ ��Z�
n )þ iknT

��
n þ f �n ; ð5Þ

whereZ�
n = un � bn are theElsässer-like variables,�

� = (� � �)/2
are combinations of kinematic viscosity and resistivity, f �n are
external driving forces, and T�

n is the nonlinear term, obtained by
assuming (1) that the nonlinear interactions occur in triads of
neighboring modes and (2) the conservation of the total pseudo-
energies E� =

P
n |Z

�
n |

2 (and thus the energy E = Eþ þ E�

and the cross helicity hC = Eþ� E�) and a third invariantH�
K =P

n sgn (� � 1)nk�n |vn|
2, which depends on the dimensionality of

the MHD system being modeled (Giuliani & Carbone 1998).

2.2. Specifics of the Shell-Atm Model

The ‘‘classical’’ GOY-like shell model that we have just pre-
sented corresponds to MHD, where the average magnetic field
Bk has not yet been separated out; in the Shell-Atm model we
present now, the average magnetic field Bk is separated out by
starting from the RMHD equations (eqs. [1]Y[3]). The newmodel
we obtain corresponds basically to a pile of planes coupled by
Alfvén waves, each containing a ‘‘classical’’ shell model for
two-dimensional (2D) MHD (Fig. 1, top). This is similar to the
loop model developed independently by Nigro et al. (2004), but
the stratification of the atmosphere that we introduce allows to
use this model in a large variety of cases of coronal loops or other
structures (althoughwe do not use this specific feature in the runs
presented in this paper). The Shell-Atm model has the following
properties:

1. The profile of the Alfvén speed bk(z) along the mean field
(i.e., the atmospheric structuring of the plasma) is given through
a density stratification �0(z), an areal expansion factor of the flux
tube A(z), and magnetic flux conservation. The latter two effects
imply that the width of the loop and corresponding wavenumber
k0 must also, in general, depend on z.
2. The Elsässer variables Z�

n now depend on the position z of
the plane along themain axis of the simulation box, and the left-hand
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side of equation (5) is replaced by the term (@t � bk@z)Z
�
n �

1
4
Z�
n @z( ln �)� 1

2
Z�
n @zbk, corresponding to linear Alfvén wave

propagation in a stratified static atmosphere (eq. [4]). As a result,
the external driving forces f �

n are not needed anymore, as energy
can simply be input as an incoming energy flux at the boundaries.

3. The nonlinear interactions occur inside each plane, in two
dimensions. In this case the third invariant of MHD is anas-
trophy, that is, the total square modulus of the magnetic potential
(H�

K with � = 2). The coefficients of the nonlinear terms T�
n of

the shell model are then those of Giuliani & Carbone (1998) with
parameters � = 2 and � > 1 (i.e., � = 5/4 and �m = �1/3).

To summarize, the fields of the Shell-Atm model are the com-
plex variables Z�

n (z, t), which are the Elsässer-like fields un(z, t) �
bn(z, t). Here n is the index of the shell, corresponding to the
perpendicular wavenumber kn(z) = k0(z)k

n, with k = 2; it can
be any integer (positive or negative), but for numerical com-
putations it is convenient to assume that Z�

n (z, t) is zero outside
some domain [0, n? � 1].4 The quantity z is the position on the
axis supporting Bk, in a domain [0, L] discretized over nz planes.
The equations of the model are

(@t � bk@z)Z
�
n � 1

4
Z�
n @z( ln �)� 1

2
Z�
n @zbk

¼ �k 2
n (�

þZ�
n þ ��Z�

n )þ iknT
��
n ð6Þ

with T�
n given by Giuliani & Carbone (1998) (with � = 2, � =

5/4, and �m = �1/3).

2.3. Quantities Derived from the Fields of the Model

As Z�
n (z, t) represents the Elsässer field at perpendicular wave-

numbers included in the shell Sn and at position z, |Z�
n (z, t)|

2/4
is the energy per unit mass at position z at time t in the modes

included in shell Sn. If we assume that the modeled loop is a
cylinder of diameter 2�/k0 and that, after discretization in the
z-direction, the separation between planes (i.e., the thickness of
each plane) is �z, then the cross section of the loop by a plane is
A = �3/k 2

0 and the volume associated with each plane is V = A �z;
with a mass density �0, the mass associated with each plane is
m = �0A �z and the energy contained in the field Z�

n (z, t) is

E�
n (z; t) ¼

m

4
jZ�

n (z; t)j
2 ¼ �0

4

�3

k 2
0

�zjZ�
n (z; t)j

2: ð7Þ

En as a function of n (for any field, position, and time) will
hereafter be referred to as the ‘‘shell energy spectrum.’’ To obtain
a 1D perpendicular spectrum (as those given by turbulence theo-
ries), we need in addition to take into account the geometry of
the shell Sn in Fourier space: for a shell model representing 2D
MHD, Sn has an area S(Sn) = �k 2

n (k
2 � 1). It follows that the

2D energy spectral density in the shell is En/S(Sn) and that the
1D energy spectral density is 2En/[kn(k

2 � 1)]. Note that for this
reason there is a difference of 1 between the slope of a power-
law 1D perpendicular spectrum (e.g., �5/3 for a spectrum as in
Kolmogorov 1941) and the slope of its ‘‘shell energy spectrum’’
counterpart (e.g., �2/3).

2.4. Scales of Quantities of the Model and Timescales

The equations are rendered nondimensional by introducing
characteristic units of time, length, and density. For the coronal sit-
uation we choose 107 m for the unit of length, 1 s for the unit of
time, and 109 kg for the unit of mass. Then the units of the other
quantities derive naturally from these basic units and are 10Mms�1

for velocity, 10�12 kg m�3 for mass density, 1014 m2 s�1 for dif-
fusivities, 1023 J for energies, and 1023 W for powers.

The characteristic timescales for each of the terms of equa-
tion (6) are deduced from their orders of magnitude:

@tZ � bk
kk
2�

Z � �̄k 2
?Z � k?Z

2; ð8Þ

where Z is the order of magnitude of the fields Z�
n of the model at

wavenumbers kk (parallel to Bk) and k? = k0k
n, and where �̄

represents either � or �. We obtain

1. The Alfvén time, 	A = 2�/(bkkk);
2. The characteristic time of dissipation, 	� = (�̄k 2

?)
�1;

3. The characteristic time of nonlinear interactions 	NL =
[k?Z(k?)]

�1 in the planes; and
4. The wave reflection timescale, tR = 2/@zbk.

The maximum Alfvén time 	A;max is obtained for kk = 2�/L and
corresponds to the time needed by the wave to cross the simu-
lation box. By taking, on the other hand, the minimum of all
the characteristic times in the box [using kk = 2�/�z to get 	A;min,
k? = kn?�1 to get 	�;min, and 	NL;min = ([k?Z(k?)]max)

�1], we can
estimate the time step needed by a numerical scheme according
to the Courant-Friedrichs-Lewy (CFL) condition.

Other timescales also appear in the Shell-Atm model:

1. The correlation time t� of the forcing, which depends on
the precise form of the forcing (see x 2.5 for the case of a
coronal loop); and

2. The turbulent cascade timescale 	cascade =
P

n 	NL(k? =
kn), where the sum is taken over the modes n of the inertial
range of the spectrum (see x 3.2).

2.5. Case of a Coronal Loop

Geometry.—For the case of coronal loops forced by photo-
spheric motions, we consider the loops to be ‘‘straightened out’’

4 The energy flux from the domain [0, n? � 1] outward is then zero, as can
easily be seen using the equation of the spectral energy flux (eq. [14]) for n = 0
and n = n?.

Fig. 1.—Top: Layout of the Shell-Atmmodel in the general case; shell models
in planes orthogonal to Bk are piled up along Bk. Bottom: In the case of a coronal
loop, the loop is unbent into the cylindrical simulation box.
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as seen in Figure 1 (bottom). This is similar to the cellular auto-
maton model presented in Buchlin et al. (2003), but here the
nonlinear interactions between modes of MHD turbulence are
represented through shell models instead of cellular automata.
Furthermore, for simplicity we choose uniform density �0, Alfvén
speed bk, and loop width (2�/k0); more realistic cases will be
studied in future work.

Forcing.—With this geometry, the boundary planes of the
model represent the footpoints of the loop, which are anchored in
the photosphere. We choose to impose a time-dependent vortex-
like velocity field on the modes at larger scales, corresponding
to photospheric convective motions at the scale of the super-
granulation. Since the velocity is imposed, waves traveling along
the loop are partially reflected at the photosphere.

The imposed velocity field un(z, t) on each mode n of both
boundary planes z = 0 and z = L has the form

uz;n(t) ¼ uf;n½e2i�Az; n sin2 (�t=t�)

þ e2i�Bz; n sin2 (�t=t� þ �=2)�; ð9Þ

where uf;n is the amplitude of the forcing (nonzero only for some
n corresponding to scales 2�/kn of the supergranulation) and Az;n

and Bz;n are independent random complex coefficients of mod-
ulus 1 whose complex arguments are uniformly distributed over
[0, 2�]. These coefficients are kept constant during time intervals
of duration t�, and they are randomly changedwhen t � 0 (mod t�)
and t � t�/2 (mod t�) respectively, that is, when the correspond-
ing sin2 term is zero. This is another difference from the model
of Nigro et al. (2004), who force by using a stochastic velocity
function on one boundary plane only. The autocorrelation time
of the forcing field is then on the order of t�, which is chosen to
be much longer than all the other timescales of the model (x 2.4).

In practice, this boundary condition is realized by imposing
an incoming Alfvén wave Zþ

n (0, t) = �Z�
n (0, t) þ 2u0;n(t) at the

boundary z = 0 and an incoming Alfvén wave Z�
n (L, t) =

�Zþ
n (L, t) þ 2uL;n(t) at the boundary z = L. The resulting power

entering the loop is


f ¼
1

4

X
n

�0(0)bk(0)A(0)½jZþ
n (0; t)j

2 � jZ�
n (0; t)j

2�

þ 1

4

X
n

�0(L)bk(L)A(L)½jZ�
n (L; t)j

2 � jZþ
n (L; t)j

2�: ð10Þ

Note that this power is not imposed but depends on the fields
already contained in the simulation box.

3. NUMERICAL SIMULATIONS AND ANALYSIS
OF THE RESULTS

3.1. Energy

3.1.1. Energy Balance

Alfvén wave propagation, as well as the nonlinear terms in our
shell model, conserves energy, so that changes in the total energy
in the loop arise only from flux through the photospheric bound-
aries (i.e., the forcing) and from the dissipation. This energy bal-
ance is well verified in practice, within 1% in general as can be
seen in Figure 2, as long as the numerical dissipation due to the
numerical scheme for wave propagation is not too high; the con-
dition for this is that the perpendicular dissipation scales not be
too small compared with the separation between planes in the
z-direction.

3.1.2. Ratio of Magnetic to Kinetic Energy

The ratio of the magnetic to kinetic energy in the stationary
state may be estimated as follows: First, a simple linear estimate
of the velocity field leads to

u? ¼ u?;0(x; y) cos (!pht) z=L; ð11Þ

where !ph/2� is the characteristic frequency of the photospheric
motions, while the magnetic field is given by

b? ¼ u?;0(x; y)bkt=L: ð12Þ

The relative importance of the higher frequency modes to this
low-frequency energy flux was discussed byMilano et al. (1997);
given that the Alfvén wave travel time along a loop is on the order
of seconds, while most of the power in photospheric motions is
in the minutes-to-hour range, it is the low-frequency resonance
that plays the more important role. Energy injection from the
photosphere into the corona therefore grows as t 2 and is stored in
the transverse coronal magnetic field, while the velocity field is
bounded by its photospheric value. The linear solution will even-
tually break down, because the magnetic field determined by
equation (12) is not in general force-free and therefore will cause
the coronal field to evolve dynamically. The ratio of magnetic to
kinetic energies at this point may be estimated dimensionally by
asking for the change in coronal velocity field determined by
nonlinear interactions in equation (1) to be of the same order of
magnitude as the field given by equation (11). Denoting the rms
photospheric speed by uf , after a time �t the nonlinear term
has the dimensional value u2

f b
2
k�t 2/lL2, growing quadratically

with time. It will cause a change in the coronal loop velocity field

Fig. 2.—Energy balance in the model. Top: Energies and integrated dissipa-
tion powers (upper thin line, integrated power of forcing; lower thin line, inte-
grated dissipation power; thick line, energy, and sum of integrated contributions
of powers). The small deviation (only 1% over the time span of this plot) of the
energy compared with the sum of integrated powers shows that the numerical
dissipation is low. Bottom: Power time series (top to bottom, forcing power, nu-
merical dissipation power, and dissipation power). Quantities with negative con-
tributions to the energy balance are shown as having negative values. [See the
electronic edition of the Journal for a color version of this figure.]
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of the same order as uf over the time �t, when u
2
f b

2
k�t 2/lL2 �

uf /�t. One then recovers the time�t as�t � 	 2=3
A;max	

1=3
e , where

	A;max is the loop crossing time while 	e = l/uf is the nonlinear
time calculated on the photospheric velocity. The ratio of mag-
netic to kinetic energies in the corona at this stage is then

Eb

Eu

¼ 3

�
�t

	A;max

�2
¼ 3

�
	e

	A;max

�2=3
; ð13Þ

which we associate with the saturation level of magnetic to ki-
netic energy. This ratio should be a function of the aspect ratio
a = bk	A;max/l of the loop. To checkwhether the Shell-Atmmodel
follows this dependence, we perform a series of simulations
with parameters bk = 1, k0 = 20� (i.e., a width l = 0.1), � = � =
10�9, and uf;n = 10�3 for n2 [2, 4]. The number of shells is
n? = 16, and the number of planes nz is taken in the set {200,
500, 1000, 2000, 5000} with a separation 10�3 between planes
in all cases, leading to lengths L 2{0.2, 0.5, 1, 2, 5} and aspect
ratios a2{2, 5, 10, 20, 50}.

The ratio of magnetic energy to kinetic energy in the stationary
state is plotted as a function of aspect ratio in Figure 3, together
with what is expected from equation (13). The numerical results
we obtain roughly support this scaling, although the experimen-
tal ratios are smaller than the theoretical ratios by a factor of 1.36,
and the values for an aspect ratio a = 2 deviate from the scaling

obtained for other aspect ratios. The slight departure from the
proposed scaling, and the fact that the saturation level of mag-
netic to kinetic energy is lower than predicted, could be due to the
‘‘leakage’’ of energy to the higher frequency resonances of the
loop (as shown in Fig. 13 below).

3.2. Spectra

3.2.1. Formation of the Spectra and Spectral Energy Flux

The energyflux in each plane from the shells k < kn to the shells
k � kn is the derivative of the energy contained in the shells
k � kn due to the nonlinear terms T�

n , namely,

�n ¼ � kn

4k2
=

X
s¼�1

(�m � � )Z�s
n�2Z

s
n�1Z

s
n

þ (2� � � �m)Z
s
n�2Z

�s
n�1Z

s
n

þ k½(� þ �m)Z
s
n�1Z

s
nZ

�s
nþ1

þ (2� � � �m)Z
s
n�1Z

�s
n Zs

nþ1�: ð14Þ

With bn = 0, we recover the hydrodynamic spectral energy flux
given in equation (2) of Frick & Sokoloff (1998). Furthermore,
this energy flux is consistent with the general idea that the energy
flows ‘‘downhill’’ in the 1D perpendicular energy spectrum.

When starting the simulation from a very low amplitude field
(Fig. 4), the magnetic energy and then the kinetic energy at the
scales of the forcing grow, and when the fields are sufficiently
large, nonlinear effects become visible as energy is transferred to
modes beyond those initially forced. In particular, there is a flux
to higher k? mode numbers (�n > 0, direct cascade), which con-
tinues to the highest wavenumbers where dissipation occurs, as
well as a flux to smaller wavenumbers (�n < 0, inverse cascade),
which energizes modes at the largest scales and saturates at a
level comparable to the forced modes.

As a result of the energy cascade, an inertial range appears be-
tween the forcing and the dissipation scales, in the same way as
in the original shell models. The energy flux �n across shells is
uniform on average over the whole inertial range. The Reynolds
number in the case shown here can be evaluated to 106, which is
much higher than any Reynolds number from direct numerical
simulations. Even higher Reynolds numbers can be attained by
using more shells and planes, at the cost of the ability to do long-
term statistics.

Fig. 3.—Ratio of average magnetic to kinetic energy as a function of aspect
ratio, plotted with the theoretical scaling (solid line) derived from eq. (13) and a
power-law fit (dashed line; slope �0.74 � 0.14), for parameters bk = 1, l = 0.1,
and uf ;n = 10�3.

Fig. 4.—Kinetic (left) and magnetic (right) perpendicular spectra of energy in the shells of the model, averaged over the length of the loop. On each plot, 40 spectra
are shown, separated by 10�2 units of time, starting shortly after the beginning of the simulation (lowest curves). The forcing is performed on modes corresponding to
log kn = 2.4Y3.0.

SHELL-MODEL RMHD TURBULENCE 705No. 1, 2007



3.2.2. Fluctuations of the Spectra

Once in the stationary phase, the spectra continue to fluctuate,
with characteristic timescales linked to the ‘‘local’’ timescales—
that is, the timescales, as described in x 2.4, considered as de-
pending on the mode kn (Fig. 5). The most relevant timescale
seems to be the local nonlinear timescale 	NL(k), defined in x 2.4,
as this is the timescale on which the energy in a givenmode n can
change under the action of the nonlinear terms in equation (6).
More precisely, no dynamics occurs at timescales below the local
nonlinear timescale, as can be seen in Figure 6: the modes with
low k? thus only have long fluctuation times, excited by the long
timescales of the forcing, while the modes with high k? fluctuate
quickly, but still with long characteristic times due to the flow of
energy coming from the modes at low k? (these long-term fluc-
tuations are common to the whole spectrum).

3.2.3. Evolution of the Spectra during an Event

To understand what happens during episodes of high energy
dissipation, we have analyzed the spectra of the fields before,
during, and after such an episode. The differences in spectra with
respect to an average spectrum (Fig. 7) show that before the event
(maximum dissipation corresponds to the red spectrum differ-
ences), the energy accumulates over thewhole spectrum. The total
energy is then high, the nonlinear times are short, and energy
flows rapidly down to the smallest scales according to equa-
tion (14): it enhances the spectra at the largest wavenumbers by
several orders of magnitude, leading to a strong enhancement of
the dissipation power. As energy is released, this process then
leads to a decrease of the spectrum, first in the dissipative range
(high wavenumbers) and then in the whole spectrum. The dissi-
pation power is then low again, and as the nonlinear timescales in
the inertial range are longer, the energy injected at the largest
scales cannot flow to the smallest scales as fast as before: the
energy does not easily reach the dissipative scales, and the dis-
sipation power remains low until the next such episode.

Nigro et al. (2005) underline that the leading term of the en-
ergy flux across scales (eq. [14]) is proportional to knb

2
n un (with

the notations of the shell-model variables), and they also observe
short-term variations of the kinetic energy spectrum around a
dissipation event. These variations appear to control the energy
flux to the smallest scales and, then, the dissipation. In addition,
we have shown that these variations exist on a longer term around
an event, and that the magnetic energy spectrum also varies on

the same timescales. The cross-scale energy fluxmay thus be con-
trolled by both the kinetic and the magnetic energy spectra.

3.2.4. Slopes of the Spectra

The slopes of the power-law 1D perpendicular spectra of the
velocity and magnetic field (Fig. 4) seem to be roughly equal in
the inertial range, but as the spectra fluctuate with time, there are
fluctuations of the slopes. The distribution of these slopes ob-
tained at different times is shown in Figure 8: the median slope
is �1.89 (with standard deviation 0.10) for the velocity spec-
trum and �1.81 (with standard deviation 0.13) for the magnetic
spectrum. It appears that, on average, the kinetic spectrum is
slightly steeper (by 4%) than the magnetic spectrum. If we look
specifically at the times when the total dissipation power exceeds
its 90th percentile, that is, during events of energy dissipation,
the spectra are slightly shallower, with the median slopes being
�1.83 and �1.77 for the velocity and magnetic spectra, respec-
tively. This reflects the fact that more energy is present at small
scales during events of energy dissipation (Fig. 7, red curves).
These 1D spectra are different from those found by Nigro et al.

(2005) corresponding to 1D spectra of slope �5/3 for velocity
and approximately �3 for magnetic field; an explanation could
be that their inertial range was smaller, and that their fitting range
includes scales where forcing occurs.

3.2.5. Parallel and Perpendicular Spectra

In this model, nonlinear interactions occur only in perpen-
dicular planes. Development of small scales along the magnetic
field is thus merely a consequence of the Alfvénic propagation
of differences in the dynamics in different planes. One therefore
expects parallel and perpendicular spectra to be different, with a
relationship determined by the so-called critical-balance condi-
tion, namely, that for a given perpendicular scale, differences in
the parallel direction can appear only between planes such that
the Alfvén propagation time is longer than the (perpendicular)
nonlinear time at that same scale (see, e.g., Goldreich & Sridhar
1995; Cho et al. 2002; Oughton et al. 2004). In the present model,
assuming a k�� 1D energy spectrum (i.e., a k��þ1 ‘‘shell energy
spectrum’’), the nonlinear timescale is 	NL(k?) / k(��3)=2. With
a constant and uniform advection velocity bk, the critical-balance
condition can be expressed as

kkP
Z(k0)

bk
k
(3��)=2
? k

(1��)=2
0 : ð15Þ

Note that with a Kolmogorov � = 5/3 spectrum, we recover the
result kk / k 2=3

? of Goldreich & Sridhar (1995).
For a field an(z) of the model at a given time t (a can be Z�

n , un,
or bn), let ãn(kk) be its Fourier transform along the z-axis. We
obtain the two-dimensional power spectrum of a (a function of
k? = kn and kk) from

A(k?; kk) ¼
c

kn
jãn(kk)j2; ð16Þ

where c is a constant.
To obtain a sufficient wavenumber range in the parallel and

perpendicular directions, we need to perform simulations with a
very large number of planes. This is achieved by starting a simu-
lation with a number of planes nz;0 and then, once the energy has
reached its final order of magnitude, by stopping the simula-
tion and resuming it after having interpolated the fields in the
z-direction. We can perform several iterations of this process if

Fig. 5.—Timescales as a function of k?: Alfvén time 	A;min, nonlinear time
	NL, dissipation time 	� , forcing correlation time t�, and crossing time 	A;max (top
to bottom in the figure key).
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needed. Figure 9 shows a 2D spectrum obtained by summing
the Zþ and Z� spectra and averaging them over 10 times sepa-
rated by 10	A;max, during a run with nz = 10nz;0 = 5000 planes
(runs with 50,000 planes were also performed). The level lines
in (k?, kk)-space are clearly noncircular and appear to follow the
critical-balance ellipses (eq. [15]) at large k?, although with an
excess of energy in the parallel direction. The anisotropy angle
as defined by equation (5) of Del Zanna et al. (2001) computed in
the range log k 2 [1.8, 4.4] (where the spectrum is known as a
function of both k? and kk) is 67

	
, which confirms that the spec-

trum is elongated in the perpendicular direction.

3.3. Dissipation, Heating Function, and Statistical Properties

Heating function.—If we look at the energy dissipation power
per unit length as a function of both time and position along the
loop, we get the ‘‘heating function’’ (Fig. 10a). We see again
(and for the same reasons as before) short-lived events of dis-
sipation, and they correspond to short structures along the axis of
the loop, whose size is on the order of the propagation distance
of the structure during its lifetime. Some Alfvén wave packets
are also strong enough to be dissipated only after interacting
with many counterpropagating wave packets, and thus they live

longer and leave an oblique trace in the heating function during
their propagation.

Furthermore, when we look at the heating function at long
timescales, of hundreds of crossing times 	A;max (Fig.10b), some
features appear that are related to the slow variations of the total
energy (mainly contained in the slowly varying low-k? modes)
under the effect of the slow forcing, of timescale t� (which is cho-
sen to be a few hundred 	A;max). The time variations of the dissi-
pation power at these timescales (corresponding to a fewminutes
of physical time) seem to be almost the same at all positions along
the loop. This is consistent with the common statement that the
loops are heated as awhole, even though (1) the elementary events
of dissipation, as seen in Figure 10a, are each small compared
with the length of the loop and (2) thermodynamics, which would
further smooth out the appearance of the heating function ob-
tained from observable variables (because of the fast conduction
times), has not yet been taken into account.

Dissipation power time series.—The integral of the heating
function along the loop is the time series of the power of energy
dissipation 
(t), shown in the lower portions of Figures 10aY10b.
These time series display spikes of high dissipation power at short
timescales during high-activity periods, as is usually found in both

Fig. 6.—Time series of the total energy contained in the shells n2 {2, 8, 14, 20} of the model, and Morlet wavelet timescale planes of each of these time series. The
axes of the timescale planes are time (horizontally) and timescale (vertically, logarithmic). The theoretical nonlinear timescale 	NL(kn) as a function of time has been
superposed on each timescale plane. [See the electronic edition of the Journal for a color version of this figure.]
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observations of solar flares and simulations of high Reynolds
numberMHD turbulence. The dissipation time series are analyzed
further below.

Average profile of dissipation power.—On the other hand, the
time average of the heating function, that is, the average power of

energy dissipation per unit length as a function of position along
the loop, shown in Figure 10c, is almost flat and drops only near
the loop footpoints. This would suggest that coronal heating takes
place almost uniformly along loops, although not at footpoints;
however, one must bear in mind that these simulations do not yet
take into account realistic profiles of density and magnetic field.

Fig. 7.—Top left: Differences between kinetic perpendicular spectra of energy in the shells of the model and their average (in logarithmic space). The spectra are
averaged over the length of the loop and are plotted at times surrounding an event of dissipation power (corresponding to the red spectra): 10 spectra are shown before the
event, and 10 spectra are shown after; the difference spectra are each separated by 10 units of time, and are stacked from top to bottom, with a shift of 1 unit of the y-axis
between each. Top right: Same plot for the magnetic energy spectra. Bottom: Time series of energy and dissipation power, with the colors corresponding to the time
intervals used to compute the spectra.

Fig. 8.—Distribution function of the slopes of the 1D perpendicular spectrum
averaged along Bk, for the kinetic (solid line) and magnetic (dashed line) fields.
The median slopes are respectively �1.89 and �1.81 and are plotted as vertical
lines. The distribution of the ratios between the slopes for kinetic and magnetic
perpendicular spectra is shown in the inset, together with its median value of
1.044.

Fig. 9.—Total spectrum of the Zþ and Z� fields, as a function of the per-
pendicular and the parallel wavenumbers. The solid lines are level lines, and
the dashed lines are ellipses with axes k? and kk / k 2=3

? , for different values
of k?.
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Intermittency.—The increments �	 
(t) = 
(t þ 	) � 
(t) of the
time series 
(t) at a given time lag 	 have a distribution whose
shape depends on the lag: in Figure 11, the distributions of the
�	 
(t) normalized by their standard deviation have wider wings
for short time lags than they do for long time lags. Hence the time

series is intermittent, which is confirmed by the rise of the flatness
(fourth normalized structure function) F(	) = h|�	 
(t)|4it/h|�	 
(t)|2i2t
for small time lags 	 (Fig. 11, inset). This intermittency is a con-
sequence of the intermittency that can be observed in the velocity
and magnetic fields of the model and is also predicted by models
such as those of She & Leveque (1994) in hydrodynamics and
Politano & Pouquet (1995) in MHD. It could be a consequence
of the fluctuations of the spectral flux resulting from the long-
term global fluctuations of the spectrum, which have been seen
in x 3.2.2. The modes with high k? are then intermittent, and as
they contribute the most to energy dissipation, the time series
of energy dissipation power is intermittent.

Events.—Statistics issued from observations often involve
the detection of events, or structures, from the observed fields
(Aschwanden et al. 2000; Parnell & Jupp 2000; Buchlin et al.
2006) and the distributions of their characteristics. Following the
‘‘threshold’’ definition of Buchlin et al. (2005), with a threshold
fixed at the average dissipation power, we obtain the distributions
shown in Figure 12 for the event total energy content, the peak
power of energy dissipation, the duration of events, and the wait-
ing time between two successive events.

The distribution of the peak power in events is narrow, as a re-
sult of the summation of the heating function over the whole loop:
the local spikes of energy dissipation are hidden by the average
dissipation occurring in the whole loop. On the other hand, the
distributions of integrated dissipation power (total energy con-
tent of events) and of event duration are very wide. This is par-
tially due to the threshold definition used (Buchlin et al. 2005) in
the case of this time series, where long timescales are superposed
on the shorter timescales of energy dissipation in the dissipative
range. Furthermore, the waiting times between successive events
also have a wide power-law distribution. However, as discussed
extensively in Buchlin et al. (2005), this result depends on what
definition of an event is used to extract events from the time se-
ries of the power of energy dissipation.

Compared with the distributions of events obtained from the
loop shell model of Nigro et al. (2004), the main difference is the
much steeper slope (�4.9 instead of �1.8) of the distribution of
the peak power in events. The reason could be the summation
effect due to the existence of more but smaller dissipation events
along the loop, because of the higher resolution we used in this
run, both along the loop (nz = 2000 instead of nz = 200, allowed

Fig. 10.—(a, b) Heating function, or power of energy dissipation per unit length,
as a function of time t and position z along the loop. Two different time intervals
are shown. The lower plot in each panel represents the integral along the loop of
the heating function (i.e., the total power of energy dissipation as a function of
time). (c) Time average, over 1200	A;max following (a), of the heating function as
a function of position along the loop.

Fig. 10b

Fig. 10a

Fig. 10c

Fig. 11.—Distributions of the increments of the energy dissipation power time
series for different time lags. Inset: Flatness corresponding to these dissipation
power increments. [See the electronic edition of the Journal for a color version of
this figure.]
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by the parallelization of our code) and in the perpendicular direc-
tion (n? = 16 instead of n? = 11).

3.4. Frequencies and Time Correlations

3.4.1. Frequencies

The time series of the kinetic and magnetic energies reveal
oscillations corresponding to an exchange of energy between the
velocity and magnetic fields. These exchanges occur, for exam-
ple, thanks to the crossing of Zþ andZ� wave packets and should
have periods that vary depending on the precise number and
repartitioning of wave packets along the loop. A characteristic
timescale is of course given by the Alfvén crossing time 	A;max,
corresponding to the first resonance frequency f0 = 1/	A;max.
Multiples of the Alfvén crossing time correspond to higher fre-
quency resonances of a loop in linear theory. While the power
spectrum of the time series of total energy is a power law of index
�2 over more than 4 decades, the spectra of magnetic and kinetic
energy display peaks corresponding to these resonances. The
spectrum of the time series of kinetic energy (Fig. 13) fits to a
power law of index�2.5 at very low frequencies. The first reso-
nant frequency, together with the higher frequency harmonics,
appear as peaks overlying a different, steeper power law for the
higher frequencies, as shown in the bottom panel of Figure 13.
The frequencies of the peaks correspondwell to integer multiples
nf0 of the fundamental for n � 5, while at lower frequencies they
appear shifted. This shift, which is absent in a linear simulation
(realized with the same parameters but without shell models, i.e.,
with no nonlinear interactions), is probably due to anharmonicity
introduced by the nonlinear effects, as shown by Milano et al.
(1997) and Nigro (2005).

An even better understanding of these oscillations may be
gleaned from a time-frequency analysis by means of a wavelet

transform, shown in Figure 14: there are oscillations that have
long but finite lifetimes and different frequencies dominantly
around the fundamental harmonic. These oscillating high-frequency
wave packets appear to arise in association with dissipation bursts,
seen in the dissipation power time series (Fig. 14, bottom). This
intermittent rise in the high-frequency component of the veloc-
ity field may be involved in the enhanced nonlinear interactions
required to generate the bursts in power, as required in the flare-
driving mechanism highlighted by Nigro et al. (2005). On the
other hand, their persistence may be related to excitation by the
time-space localization of the bursts themselves, a sort of post-
microflare resonant ringing, which might be observable with
future high-cadence spectroscopic measurements.
The comparison between the spectra of the forcing function at

a boundary and of the resulting energy time series (Fig. 13, top)
makes it clear that the spectrum of energy is not contaminated by
the spectrum of the forcing function, as the latter only contains
very low frequencies, at or below 1/t�; this may not be the case
with a stochastic forcing function such as the one used by Nigro
et al. (2004). This underscores the role of turbulence in providing
the high frequencies that can resonate in the loop, viewed as a
cavity for Alfvén waves, even in the absence of an external driver
at these frequencies.

3.4.2. Autocorrelations

The correlation time of the energy time series is a few dozen
Alfvén wave loop crossing times (Fig. 15), consistent with the
slow evolution of the energy that we have already noted. The cor-
relation time of the dissipation power time series is shorter, but it
is still longer than thewave crossing time, as an effect of theweak-
ness of the intermittent nonlinear interactions between counter-
propagatingwave packets and of the global long-term fluctuations
of the spectrum (including the dissipative range) noted in x 3.2.2.

Fig. 12.—Distributions of peak power, total energy content, duration, and waiting times for events found in the time series of energy dissipation power. The dotted
lines represent one event per histogram bar.
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3.4.3. Cross-Correlations

A common goal when studying solar flares and space weather
is to find precursors of flares, so as to make forecasts of possible
solar-terrestrial events (e.g., Abramenko et al. 2002; Abramenko
2005; Georgoulis 2005).With this heating model, we can use the
cross-correlations between time series to investigate which time
series react first, and what kind of observations would be help-
ful when predicting flares. We have extended the study of Nigro
et al. (2005), who show that in some events the kinetic energy
begins to grow just before the start of a dissipation event, by per-
forming a systematic correlation study between all energy and
dissipation time series (kinetic, magnetic, and total). Figure 15
shows the cross-correlations between the dissipation 
 and the
energy E time series, as well as between the dissipation 
 and the
kinetic energy Eu time series.5 Both cross-correlation functions
show delays of the dissipation compared with the energy: the dis-
sipation lags by approximately 5 time units compared with the
total energy, and by approximately 0.5 time units compared with
the kinetic energy (this last result is a confirmation of the result
obtained by Nigro et al. 2005). Thus, diagnostic methods based

on the total energy or includingmagnetic field measurementsmay
provide more useful results for space weather prediction than
methods based on the velocity field alone. However, in both cases
the delays involved are short, on the order of a minute at best.

3.5. Parametric Study of Dissipation Power

Using the same runs as in x 3.1.2 (a set of loops with different
aspect ratios for a fixed width), we compute the average energy
dissipation in a stationary state and plot it versus the aspect ratio
(Fig. 16): the energy dissipation power per unit volume scales
approximately as a�3=2. This scaling can be compared with the
different models listed byMandrini et al. (2000) and corresponds
to heating from two-dimensional MHD.

As the slope of this power-law scaling is steeper than �1,
shorter loops are more efficient in terms of dissipation power per
unit surface. This can be explained by the fact that Alfvén wave
packets that reflect on the loop footpoints interact more frequently
in a short loop than in a long loop; as a matter of fact, simulations
performed with varying Alfvén speed show that the average dis-
sipation power also increases when the Alfvén speed increases.
Assuming that the physical units of the model (see x 2.4) are
10 Mm, 5 s, and 109 kg, yielding l = 1Mm, bk = 2Mm s�1, and
�0 = 10�12 kg m�3, we find dissipation powers per unit surface
between 102 W m�2 for large aspect ratios and 103 W m�2 for
small aspect ratios. These values would be sufficient to heat the
quiet corona (Withbroe & Noyes 1977). Note, however, that
they also depend on the physical properties bk and �0 that we
have assumed for the loop. Another series of runs was performed
to explore the influence of bk on the heating, and it yields 
S /
b1:77k ; this reflects the fact that wave packets interact more fre-
quently when the Alfvén speed is higher, leading to more dis-
sipation. Both these fits, combined with a dimensional analysis
on the variables 
S (dissipation power per unit surface), �0 (mass
density), bk (Alfvén speed), uf (forcing speed), and a (aspect ratio),
yield


S ¼ 102:22

a0:52

�
�0

10�12

��
bk
106

�3�
103uf

bk

�1:23
ð17Þ

for the dissipation power per unit surface in SI units (Wm�2), as
a function of the other variables in SI units (kg m�3 and m s�1).

4. CONCLUSIONS

We have presented the Shell-Atm model, which is a general-
ization of shell models (Giuliani & Carbone 1998) with propaga-
tion of Alfvén waves along aBk-field, with the further possibility
of introducing a longitudinal stratification of physical proper-
ties (Bk, mass density, flux tube expansion factor). Although the
model is simple and includes only simplified physical processes,
it has a very interesting complex nonlinear dynamics, and it is
fast enough to obtain statistics of its fields and of the heating
it produces; the simplifications we made allow one to explore
other properties than those accessible to classical direct numerical
simulations. While it is not meant to (and cannot) replace DNSs,
for example, because of the lack of three-dimensional informa-
tion on field line topologies, it partially fills the huge gap be-
tween the Reynolds numbers in DNSs and in the real corona:
although the Reynolds numbers reached in the model, of order
106, are still lower than those expected in the corona, this already
represents outstanding progress compared with DNSs. Further-
more, this allows us to explore regimes of MHD turbulence that
are not accessible to DNSs; for instance, it allows for intermit-
tency to appear in turbulence while having a complete description

5 Other correlations of pairs of time series of kinetic,magnetic, or total energy
or dissipations have not been plotted because they are very similar to either of the
plotted correlations, as 
uT
b 
 
 and EuTEb 
 E.

Fig. 13.—Spectrum of the time series of kinetic energy (solid black curves).
The bottom panel is a zoomon the high-frequency range of the spectrum,where ver-
tical lines represent the harmonics of the first resonant frequency, f0 = 1. Power-
law fits and the slopes obtained are superposed; the horizontal range of the lines
indicates the range of the fits, and they are shifted vertically for clarity. The spec-
trum (in arbitrary units) of the square amplitude of the forcing function [|u0;n(t)|

2

from eq. (9)] is superposed in the top panel (dashed gray line).
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of the spectra and of the nonlinear interactions in the perpendic-
ular direction. On the other hand, having even higher Reynolds
numbers, and thus the smallest scales, may require taking into
account non-MHD effects, such as kinetic effects, which can still
be neglected in this model.

The model has been used in this paper in the case of a mag-
netic loop for the solar corona, in which the physical properties
of the medium (namely, the external longitudinal magnetic field
Bk and the mass density) are assumed to be uniform along the
loop. In this case, and thanks to the aforementioned characteris-
tics of the model, we were able to show that this model loop dis-
plays a dynamics over a very wide range of spatial and temporal
scales (4Y5 orders of magnitude); spectra that are formed by a
local cross-scale energy flux, and which have a wide inertial range
in either direction, perpendicular or parallel to the external mag-

netic field; a clear anisotropy between the parallel and perpendic-
ular spectra, which could be compatible with the ‘‘critical balance’’
phenomenology; a scaling of the average ratio of the magnetic
energy over the kinetic energy consistent with RMHD; a heating
function with multiple spatial and temporal scales; a flat longitu-
dinal profile of the average dissipation power (although this may
be dismissed by further simulations, with nonuniform physical
properties of themedium along the loop); a spiky, and statistically
intermittent, time series of energy dissipation power; power-law
distributions of the characteristics (peak energy, total energy,
duration,waiting times) of ‘‘events’’ extracted from the time series

Fig. 14.—Center: Morlet wavelet timescale plane of the kinetic energy time series ( logarithmic color scale). Oscillations of long but finite lifetime and of different
frequencies can be seen at timescales (vertical axis) between 0.2 and 0.6. Left: Averagewavelet spectrum.Bottom: Time series of total dissipation power. [See the electronic
edition of the Journal for a color version of this figure.]

Fig. 15.—Autocorrelation functions and cross-correlation functions of time
series of energy and energy dissipation power. E is energy, Eu is kinetic energy,
and 
 is the dissipation power.

Fig. 16.—Average power of energy dissipation per unit volume (model di-
mensionless units) vs. aspect ratio a, for a fixed loop width l = L/a = 0.1 and
external field bk = 1. The power-law fit (solid line) has slope �1.52. The two
dashed lines represent dissipation powers per unit surface of 102 and 103 Wm�2,
respectively.
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of dissipation power; finite-lifetime packets of resonant frequen-
cies in the time series of energy, whose frequencies are shifted
from the harmonics of the linear resonant frequencies because of
the nonlinearities; long-range time correlations in time series; a
delay of the dissipation time series compared with some energy
time series; and an average dissipation power that scales with the
loop parameters and could be sufficient to sustain the high co-
ronal temperatures. As discussed above, some of these results
confirm or complete the results of a similar model (Nigro et al.
2004, 2005).

Further directions for the study of the solar corona using this
model include taking advantage of the possibility of modeling
nonuniform regions (1) to allow for density gradients in a coronal
loop, in order to seek for the preferred locations of coronal heat-
ing, and (2) to study a magnetically open region such as a coronal
hole. In order to obtain diagnostics that can be compared with ob-
servations, this heating model can be coupled to the thermodynam-
ics of a loop (including the cooling by conduction and radiation),
upon which forward modeling of coronal spectral lines may be

carried out. We also believe that this model can be used in other
heliospheric and astrophysical applications where MHD applies
and where there is a strong dominant magnetic field (see x A3 in
the Appendix for code availability).
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APPENDIX

THE NUMERICAL CODE

A1. NUMERICAL SCHEMES

The time advancement of the nonlinear terms of the shell models is performed with a third-order Runge-Kutta scheme. The Alfvén
wave propagation is accomplished with the Fromm (1968) numerical scheme. Finally, the dissipation terms of the shell models can be
computed with an implicit scheme. This allows us to relax the CFL condition on 	� and thus to fully resolve the dissipative range of the
spectrum at no further computational cost.

A2. PARALLELIZATION AND PARALLEL EFFICIENCY

The Shell-Atm model is parallelized using the Message Passing Interface standard, by simply distributing the planes over the
processors. Communications are mainly needed for the propagation of the Alfvén waves between the domains corresponding to the
different processors, and for the output. The resulting parallelization efficiency is good and is even close to ideal (up to hundreds of
processors for nz = 104), thanks in particular to effects due to the cache size (when the number of processors grows, the local data be-
come small enough to fit entirely in the level 2 memory cache of each processor).

A3. ARCHITECTURE OF THE CODE AND AVAILABILITY

The Shell-Atm code is modular and can be adapted to a large variety of physical systems. Different models for the nonlinearities and
different numerical schemes can be chosen.We believe that the code can be useful for the community, and we have thus released it under
the GNU General Public License. The code and its manual can be found at http://www.arcetri.astro.it /�eric /shell-atm/codedoc.
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